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METHODOLOGY

Distortion of ERP averages due to overlap from
temporally adjacent ERPs: Analysis and correction

MARTY G. WOLDORFF

Department of Neurosciences, University of California-San Diego, La Jolla

Abstract

In studies of event-related potentials (ERPs), short interstimulus intervals (ISIs) are often employed to investi-
gate certain neural or psychological phenomena. At short 1SIs, however, the ERP responses to successive stimuli
may overlap, thereby distorting the ERP averages. This paper describes a signal processing approach for analyzing
the distortion of ERP averages due to such overlap. In general, the distortion is modeled in terms of mathemat-
ical convolutions of the ERP waveform elicited by each type of adjacent stimulus with the corresponding distri-
bution in time of those stimuli relative to the averaging epoch. Using this framework, a number of implications
of ERP overlap for experimental design and interpretation are examined, with special emphasis given to selec-
tive attention paradigms. It is shown that the possibility of confound due to ERP overlap is widespread in short-ISI
experiments, and even the widely used procedure of stimulus randomization does not necessarily control for dif-
ferential distortion of the ERPs to attended versus inattended stimuli. Problems due to ERP overlap can be par-
ticularly serious in short-ISI studies that examine how ERPs (and associated perceptual processes) are influenced
by the nature of the preceding stimulus (i.e., stimulus sequence effects). A set of algorithms is presented for es-
timating and removing the residual distortion due to response overlap from recorded ERP averages. The use of
these algorithms, collectively termed the Adjacent Response (Adjar) Technique, can alleviate many of the overlap-
related problems that arise when short [SIs are used, thereby enhancing the power of the ERP technique.

Descriptors: ERP, Overlap, Selective attention, Adjar, Sequence effects, Short ISIs, Methodology, Experimen-

tal design

In studies of event-related potentials (ERPs), a series of stim-
uli is presented, and ERP averages are obtained by signal-aver-
aging epochs of EEG time-locked to the stimuli. In many

‘experiments, stimuli are presented at a relatively slow rate such

that there is little or no overlap of the ERPs elicited by succes-
sive stimuli in the series. At higher stimulus presentation rates,
however, the ERPs elicited by successive stimuli can overlap in
time, and this can result in distortion of the ERP averages.
Despite the potential for waveform distortion, there are
many experimental situations in which short ISIs are useful or
even required. One such case is the use of ERPs to investigate
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mechanisms of human selective attention. Subjective experience
suggests that when stimuli from several competing “channels”
of input (e.g., tone pips to the left and right ears) are presented
relatively slowly, it is rather difficult to attend very selectively
to the stimuli in one channel and to “tune out” the others,
whereas a high rate of stimulus delivery seems to enable a more
selective focusing of attention. This view is strongly supported
by empirical ERP evidence indicating that the early differen-
tiation of processing of attended and inattended stimuli is
enhanced by, or even requires, a faster rate of stimulus presen-
tation (Hansen & Hillyard, 1984; Hillyard, Hink, Schwent, &
Picton, 1973; Parasuraman, 1978; Schwent, Hillyard, & Galam-
bos, 1976; Woldorff, Hansen, & Hillyard, 1987; Woldorff &
Hillyard, 1991).

Rapid rates of stimulus presentation may also lead to inter-
actions in the processing of successive stimuli in the sequence
that might not occur at slower rates. Such potential interactions
could include, for example, effects on stimulus processing of
being preceded in the sequence by one stimulus type versus an-
other or being preceded at one ISI versus another. The ability
to apply ERPs to the study of such sequential effects at fast
stimulus rates could yield considerable insight into the mecha-
nisms of sensory, perceptual, and cognitive processes. Consid-
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erable problems can arise in analyzing such effects, however,
when the responses elicited by those various preceding events
overlap and distort the ERPs of interest.

Another basic reason for studying perceptual processing at
short ISIs is that there are many real-life situations in which en-
vironmental stimuli occur (and must be processed) very rapidly.
Not being able to simulate the conditions of these phenomena
in the laboratory and apply ERPs to their study places addi-
tional constraints on the ERP technique. Use of short ISIs also
allows more responses to be collected per unit time, which can
facilitate the acquisition of averaged ERPs with higher sig-
nal/noise ratios.

The main purpose of this paper is to analyze the distortion
of ERP averages that occurs when short ISIs are used and the
ERP responses elicited by adjacent stimuli overlap in time. Al-
though a number of theoretical articles have examined and
modeled the ERP averaging process (e.g., Aunon, McGillem,
& Childers, 1981; Brillinger, 1981; Hansen, 1983) and several
have presented methods to remove overlap under certain con-
ditions (e.g., Eysholdt & Schreiner, 1982; Hansen, 1983), the
present paper is specifically focused on developing a framework
for analyzing the problem of adjacent-response overlap and for
examining its implications for experimental design and interpre-
tation. In general, the emphasis here will be on selective atten-
tion paradigms, although the principles have broader
applicability to other experimental questions and protocols, as
well as to other physiological response measures besides ERPs.

In addition to examining potential problems due to ERP
overlap, a set of algorithms is presented for estimating and re-
moving the distortion due to such overlap from recorded ERP

~ averages. These algorithms, collectively termed the Adjacent

Response (Adjar) Filter or Technique, have a number of appli-
cations for short-ISI experiments, and their use can enhance the
effectiveness of ERPs for investigating neural and psycholog-
ical processes. An application of the technique to the ERP data
from two short-ISI selective attention experiments can be found
in Woldorff and Hillyard (1991).

Methods That Have Been Employed
to Deal With Overlap

Various approaches have been taken in attempt to resolve the
problem of overlapping ERP responses. One approach has been
to increase the high-pass cutoff of the filter, thereby attenuat-
ing the longer latency, lower frequency portion of the ERPs.
This technique artificially “forces” the response to be over, or
at least to appear to be over, by the time the next stimulus ar-
rives, thus eliminating or reducing the overlap. Such high-pass
filtering may achieve a reasonable solution if just the early high-
frequency waves of the ERP are of interest (e.g., the auditory
brain-stem-evoked responses). However, when the longer la-
tency waves are of interest or when these contain significant
power in the higher frequencies, simple high-pass filtering for
this purpose may be of limited value.

In this paper, unless otherwise noted, the term response will be
used in the physiological sense (in contrast to the behavioral sense, such
as a button press response). Although the context will usually be ERP
responses, the analyses and discussions will generally be applicable to
any physiological response —that is, to any physiological activity that
is associated in time with a stimulus event and is reflected by a time-
extended waveform measured by the experimenter.

-
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A very different approach capitalizes on the overlap of ad-
jacent ERP responses by delivering stimuli at a particular con-
stant ISI selected to stimulate certain components of successive
responses in phase, thus resulting in a sinsisoidal steady-state re-
sponse (SSR). Examples include visual steady-state responses
(Regan, 1972, 1982) and the auditory 40-Hz response (Galambos,
Makeig, & Talmachoff, 1981). These responses are useful probes
of brain activity in both clinical and experimental contexts.

If, however, the goal is to obtain an ERP reflection of the
processing of the individual occurrences of the stimuli in a se-
quence (i.e., the transient responses), a different solution is re-
quired. One common solution has been to randomly vary or
“jitter” the ISIs across a range wide enough so that during av-
eraging the overlapping adjacent responses tend to cancel each
other out. The degree to which jittering the ISIs can mitigate the
distortion of the final ERP averages will be examined in detail
in the next section.

Another approach to the problem of overlapping responses
has been to focus on the difference between the responses to a
stimulus under two different conditions (such as when the stim-
ulus is attended versus ignored). It has generally been assumed
that if the stimuli are randomly presented, any distortion of the
final ERP averages due to overlapping adjacent responses will
be equivalent for each stimulus type. However, there is a sub-
tle flaw in this reasoning, and there are circumstances under
which differential waveform distortion from overlap can be
produced despite stimulus randomization. This problem will
also be considered in detail.

ISI Jitter as a Low-Pass Filter With a Time Shift

At stimulus rates where successive ERP waveforms overlap, ev-
ery response included in the average (except the first and last in
the sequence) will have superimposed upon it portions of the
ERP response to the preceding stimulus and portions of the re-
sponse to the succeeding stimulus. Randomly varying or jitter-
ing the ISIs around a mean value can partially cancel or “smear
out” these overlapping adjacent responses, thereby mitigating
the distortion of the final average. An empirical rule of thumb
is that the effective jitter range needs to be larger than the
period of the slowest dominant waves in the overlapping re-
sponses. Figure 1 shows ERPs from subjects performing a
selective attention task with different ISI jitter ranges. The
ERPs in Figures 1a and b are clearly distorted by overlapping
adjacent responses, with those in Figure 1a being dramatically
worse because of the much narrower jitter range (60 ms versus
150 ms). In Figure 1¢, however, where the range of ISIs was the
widest (120-320 ms), the waveforms appear relatively undis-
torted. Note that the 200-ms jitter in this case was, indeed,
larger than the period of the dominant waves in these responses.

Given a few assumptions, the effect of ISI jitter on the over-
lap from adjacent responses can be approximated as a low-pass
filtering operation on the adjacent response with either a neg-
ative or positive time shift. To consider this process more quan-
titatively, a number of terms must be defined and certain
assumptions detailed.

Event Distributions

Consider a hypothetical experiment in which there is only one
type of stimulus, S, eliciting only one type of response, an ERP
waveform R(?). Let the ISI range be 200-400 ms, thereby yield-
ing a jitter width, T}, = 200 ms. Assume that R(¢) is always
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Figure 1. Effects of ISI jitter range on the averaged ERP response: (a)
130-190 ms, (b) 125-275 ms, (c) 120-320 ms. Responses are from sin-
gle subjects performing a selective attention task.

approximately the same no matter when it occurs (i.e., time in-
variance) and that the electrical fields of overlapping responses
add linearly (i.e., superposition).

The ERP averaging process involves time-locking of the ref-
erence epoch to the occurrence of each stimulus in turn. When
a particular stimulus is time-locked to the averaging epoch, it
is the current stimulus, occurring at ¢ = 0. Relative to this, the
immediately preceding event must have occurred between 200
and 400 ms before, because that is the specified ISI range. Fig-
ure 2 shows a possible previous-event distribution, D,(t), which
is a time histogram of the occurrences of the previous stimuli
relative to the current stimuli that are included in the average.
[There is also an analogous subsequent-event distribution,
D,(t), not presently being considered.] The event distribution
in Figure 2 appears approximately rectangular but is not per-
fectly flat because it is meant to represent a typical histogram
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Figure 2. Event distributions. Prestimulus histogram indicating the tem-
poral distribution of previous events relative to the current one (i.e., at
t = 0) during time-locked averaging at ISIs of 200-400 ms.

of actual occurrences of the previous stimuli in an experiment,
rather than a theoretical probability distribution.

To keep the responses to current and previous stimuli dis-
tinct in this discussion, the response waveform for the current
stimulus will be referred to as R, and the response waveform
for the previous stimulus as R,,. Because we are assuming that
there is only one stimulus and response type in the present dis-
cussion, R, and R, will always have the same waveshape, R. In
the more general case, however, where a number of different
stimulus types and response types occur, R. and R, would not
necessarily have the same waveshape. For example, in a typi-
cal auditory attention experiment in which the delivery of left-
and right-ear stimuli is randomized, one might want to obtain
an ERP average of all left-ear responses (i.e., the R_’s) that
were preceded by right-ear responses (i.e., the R,,’s). However,
we will continue to assume for the present discussion that the
R,’s are all basically identical to one another.

In almost all applications relevant here, response waveforms
would be sampled (digitized) at discrete time points, and event
distributions would be calculated as histograms. Thus, these
functions are assumed throughout this paper to be discrete
functions of time. In general, the most appropriate bin size of
the event distribution histograms would be the same as the sam-
ple period of the digitization.

The Averaging Process

Consider what happens when the responses to 1,000 stimuli are
averaged. The EEG averaging epochs, time-locked to each of
the 1,000 stimuli, are summed (time point by time point), and
the result (for each time point) is divided by 1,000, yielding
what will be called here the recorded ERP. Let us assume that
essentially all of the random background EEG averages out to
zero (i.e., to a flat line). Because the response R () was elic-
ited consistently at ¢ = 0, the resultant recorded ERP will in-
clude an average of 1,000 such responses.

However, the overlapping portions of the previous responses
will also be included in the average. Unlike random ongoing
EEG, however, they do not necessarily average out or approach
zero with enough trials. An intuitive picture of the averaged
Dprevious response (AvR,) can be gained as follows:;
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1. Shift waveform R, to begin at a particular time point of the
event distribution D, (7).

2. Weight it by the value of D, (¢) at that point (i.e., multiply ‘

it by the number of times the previous response began at that
point).

3. Do this at each time point of D, (¢).
4. Add all the weighted waveforms together.
5. Divide by 1,000.

Because it has been assumed that the duration of these re-
sponses is longer than the ISI, the later portion of the AuvR,
will overlap and distort the average of the current responses (the
R_’s). This distortion may or may not be negligible relative to
the remaining EEG noise, but it is not random activity that will
average out to zero. In fact, with enough trials and subjects, it
would almost invariably become statistically significant.

Normalized Event Distributions

The event distribution in Figure 2 of the actual number of oc-
currences of the previous events can easily be normalized, such
that each value of the D, (¢) function represents the proportion
of trials in which the previous event occurred at that particular
time point. To use such a normalized distribution to determine
the AvR,, in the 1,000-stimulus example, a response waveform
R, would still be placed to begin at each previous time point
and would be weighted by the value of D,(¢) at that point,
and all the weighted waveforms would be added together. The
only difference would be that one would not then divide by
1,000, because this division already would have been taken into
account in the normalization of D, (¢).

Convolutions

The weighting and summing process described above is equiv-
alent to a mathematical convolution. In particular, the averaged
previous response (AvR),) is also equal to the convolution of
the functions D,(¢) and R, (#), written

D, (1) * R,(¢)

where D, (t) is the normalized previous-event distribution,
R,(t) is the response waveform elicited by those previous
events (in a reference frame before shifting backward in time),
and the asterisk (*) is the traditional symbol for the convolu-
tion operation.

The formal mathematical definition of a (discrete) convolu-
tion commonly used in signal processing (see, e.g., Oppenheim
and Schafer, 1975) is

C(t) = Dy(t)* R, (1) = kZ‘ D,(k)R,(t — k).

=-—00

This expression is equivalent to the intuitive weighting and sum-
ming process presented above, the only difference being the or-
der in which terms are calculated and added.

As discussed below, the convolution D, * R, is essentially
equivalent to low-pass filtering of the R,(¢) waveform and
then shifting it backward in time. This filter operation can be
examined conceptually in the time domain by thinking in terms
of mutual cancellation of positive and negative values of the
waveform as R, shifts around in time. Consider a high-fre-
quency component of R,,, one whose period is shorter than 7},
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(a)

Figure 3. Schematic representation in the time domain of the low-pass
filtering of adjacent responses that results from jittering the ISI. For a
relatively high-frequency component (a), when the adjacent response is
shifted across the jitter range, 7}, the positive and negative phases
cancel each other fairly well (b). However, for a much lower frequency
component (c), the positive and negative phases do not cancel nearly as
well (d) for the same amount of shifting.

(the ISI jitter width), such as shown in Figure 3a. As R, shifts
across T, (Figure 3b), the positive and negative phases of such
a component cancel each other fairly well. However, for a
much lower frequency component (Figure 3c), the positive and
negative phases would not cancel nearly as well for the same
amount of shifting (Figure 3d). Thus, jittering the ISIs tends to
cancel the higher frequencies of the overlapping adjacent re-
sponses but leaves the lower frequencies relatively unaffected.

A more precise examination of the low-pass filtering effects
is possible in the frequency domain. The basic law of trans-
forms between the time and frequency domains specifies that
“a convolution in time is equivalent to a multiplication in fre-
quency.” That is,

Time domain Frequency domain

if the transform of D,(t) is D,(f),
and the transform of R, (1) is R,(f),
then the transform of D,(¢)*R,(¢) is [D,(NIIR, ().

If D,(¢) is put into the reference frame shown in Figure 4a,
one can calculate that the Fourier transform, D, ( f), is the sinc
function shown in Figure 4b.2 Because our interest is in examin-
ing the filtering effects on the previous response R, (¢), consider
just the magnitude of this transform at positive frequencies
(Figure 4c¢). This is the gain function of the filtering operation,

2A sinc function is one that is governed by an equation of the form
y =sin(x)/x.
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Figure 4. Frequency domain representation of the low-pass filtering of
adjacent responses that results from jittering the ISI. (a) Adjacent-event
distribution (of width 77,,) placed in a new reference frame so that it is
centered around time 0. (b) Fourier transform (amplitude only) of the
event distribution in (a). (c) Gain function (as a function of frequency)
of the low-pass filtering effects on adjacent responses.

representing the proportions of the various frequency compo-
nents of the original signal (i.e., the previous response, R,)
that are still present after filtering; this gain function clearly re-
sembles that of a low-pass filter. Most of the power that is al-
lowed through is at frequencies less than f; = 1/7},,, a value
closely related to the high-frequency cutoff of this low-pass fil-
ter. The final average of the overlapping previous responses,
which is what ultimately constitutes the distortion of the cur-
rent response average, is equivalent to passing the previous re-
sponse through this low-pass filter and then shifting it to the left
(i.e., backward) in time.

The relationship between the jitter width and the low-pass
filtering function is shown schematically in Figure 5. If T;, is
wide (Figure 5a), then f; = 1/T},, is small, and predominantly
only the lower frequencies are allowed through. If 7}, is nar-
rower (Figure 5b), f; is larger, thereby allowing more of the
higher frequencies through also. If T}, is very narrow, such as
when the ISI is constant, then f; approaches infinity, and all
frequencies are allowed through (Figure 5c). In this last case,
the distortion of the current ERP average by the overlapping
previous responses is not mitigated at all by any low-pass filter-
ing; the average overlap is simply the latter part of the previous
response shifted to the left.

The above analysis clarifies the basis of the empirical “rule
of thumb” mentioned earlier regarding the choice of the jitter
width, T;,. If T}, is as wide or wider than the period of the
dominant waves of the overlapping responses, then 1/ T\ = f;
is lower than most of the frequency content of those responses,
and the overlap will be substantially filtered or “smeared out.”

M.G. Woldorff
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Figure 5. Relationship between the ISI jitter width, T}, and the low-
pass filtering effects on adjacent responses.

Overlap From Subsequent Versus

Previous ERP Responses

Given these assumptions, a similar analysis would hold for
overlap resulting from subsequent ERP responses, with the
shifts in time to the right rather than the left. However, some
important practical differences make the effects of overlap from
previous ERPs more problematic, and these will be the primary
focus of this paper.

For subsequent ERPs, it is mainly the early part that over-
laps the current ERP. The early components of most ERPs tend
to be of fairly low amplitude and high frequency. Thus, the dis-
tortion from these components will generally be considerably at-
tenuated after the low-pass filtering effects of jittering the ISIs.
Furthermore, any residual distortion from such jittered subse-
quent ERPs overlaps the latter part of the current ERPs, which
tends to be of higher amplitude and thus less susceptible to dis-
tortion. By contrast, the latter part of previous ERP responses
overlaps the current ones. Because late waves tend to be of
higher amplitude and lower frequency, they will not be filtered
out as well by the ISI jitter. Moreover, they will overlap the
early waves of the current ERP, where effects of interest would
generally be small in magnitude.

Second-Order Event Distributions

Thus far, only adjacent events that were first order —that is,
those that were immediately preceding or following —have been
considered. In most situations, this is sufficient because the re-
sponses elicited by more remote events would not overlap R,.
However, overlap from these second-order (or higher) adjacent
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Figure 6. Temporal relationship of the first- and second-order previous-event distributions for three different ISI ranges. Left
column plots (a, b, ¢) are for ISIs of 150-200 ms with a rectangular distribution, middle column (d, ¢, f) for ISIs of 100-300 ms
with a rectangular distribution, and right column (g, h, i) for ISIs of 100-300 ms with a Gaussian distribution. Top row plots
(a, d, g) indicate the first-order previous-event distributions (i.e., that of the immediately previous events), middle row (b, e, h)
the corresponding second-order distributions (i.e., that of the events that occurred two previously), and bottom row (c, f, i)

the total distributions.

events can become relevant. For example, for a range of ISIs
from 150 to 200 ms with a rectangular distribution, the imme-
diately preceding stimulus will have occurred 150-200 ms prior
to any current event being averaged (Figure 6a). However, the
stimulus before that could have occurred anywhere between 300
and 400 ms prior to the current event. The event distribution for
this second-order event, relative to the current event, turns out
to be the convolution of the first-order rectangular distribution
with itself and shifted over, producing the triangular distribu-
tion shown in Figure 6b. Depending upon the particular re-
sponses elicited by the second-order event, as well as on the
amplifier settings used, this response could overlap R, substan-
tially. The relevant previous-event distribution would then be
the sum of the first- and second-order distributions (Figure 6c),
and the total previous-response overlap would be the convolu-
tion of the previous response with this total distribution.

In the foregoing example, the first- and second-order distri-
butions did not overlap in time. However, consider a rectangu-
lar ISI range of 100-300 ms (Figure 6d). In such a case, the
second-order previous event could occur anytime between 200
and 600 ms before the current event (Figure 6¢), and the first-
and second-order distributions would overlap. The total previ-
ous-event distribution, however, would still be the sum of the
two (Figure 6f).

Such overlap of the first- and second-order event distribu-
tions can widen the effective ISI jitter (e.g., compare Figures 6d
and f), which can enhance to some extent its effectiveness as a
low-pass filter of the adjacent responses. The effectiveness of
this low-pass filtering can be enhanced even further, however,
if this total event distribution were smooth throughout its extent
(rather than having, for example, the sharp edge at —300 ms).
One way to obtain a smoother total distribution would be to use
first-order distributions that are Gaussian (Figures 6g-i), rather
than rectangular, an approach that could be especially useful at
very short ISIs.

Stimulus Randomization Does Not Control
for Differential Overlap

Another common approach to the problem of overlapping re-
sponses has been to concentrate on the difference between the

ERP waveforms elicited by a stimulus under two different con-
ditions, rather than on the original waveforms themselves. For
example, in a selective attention paradigm, the averaged ERP
to a stimulus when it is attended is compared with the averaged
ERP to that same stimulus when it is ignored. It is generally as-
sumed that if a stimulus is equally likely to be preceded (and
succeeded) by an attended stimulus as by an inattended stimu-
lus, then any distortion from overlap will be about the same for
the attended and inattended ERPs. It is further assumed that
this justifies attributing any differences between these ERPs to
the differential processing of the stimulus, rather than to dif-
ferential overlap. There is a flaw in this argument, however.

Although stimulus randomization has implications for ad-
jacent-ERP overlap, the reasons for its widespread use arose
from other considerations. In particular, random presentation
of relevant and irrelevant stimuli in selective attention experi-
ments enables ruling out differential preparation as a confound
(Hillyard et al., 1973; Néétdnen, 1967, 1975); if subjects have
no information to help them predict the next stimulus, they can-
not differentially prepare for it. However, the assumption that
stimulus randomization also controls for differential overlap
from adjacent responses is not always valid. Although stimu-
Ius randomization does imply that any single stimulus is equally
likely to be both preceded and succeeded by all other physical
stimulus types, the responses to those various adjacent stimuli
may well change under the different experimental conditions
(e.g., direction of attention).

Consider a two-channel selective attention paradigm within
the visual modality, in which the two stimulus channels (.e.,
classes of stimuli to be attended or ignored) are left-field flashes
(L’s) and right-field flashes (R’s). Assume that (a) stimulus ran-
domization was perfect, (b) the ERP responses added linearly,
(c) the ERP responses were time invariant, and (d) there were
no other types of stimuli in the sequence (such as targets). We
will focus on overlap from preceding ERPs.

The critical comparison in these experiments is generally be-
tween the ERP elicited by a stimulus when it is attended and the
ERP elicited by the same physical stimulus when it is ignored
(i.e., when the other channel is being attended). Because the
physical stimulus is identical and stimulus randomization con-
trols for differential preparation, any differences in the ERPs



104

Previous Current

Stimuli

Previous Current

Stimuli Stimulus Stimulus

2 (L) (L)
® D ® R

Current Current
Previous Previous
Attended Inattended
Responses Responses
Response Response
b
(4) A (4) |
(1) M)
c
(L+) (L-)

L+ L—

(R-) (R+)

° )
(R+)

(L+)

R+ (R—)

" (CcH)
(F-)

Figure 7. Stimulus/response types for current and previous events dur-
ing various two-channel selective attention paradigms. L = left stimu-
lus, R = right stimulus, A = attended response, I = inattended response,
C =click, F = flash. A plus sign (+) indicates the attended response to
that particular physical stimulus type, whereas a minus sign (—) indi-
cates the inattended response.
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are presumed to be consequences of the selective internal shift-
ing of attention either toward or away from the stimulus. The
question of concern here is whether any part of the difference
between the averaged ERPs to attended and inattended stimuli
possibly could have arisen from differential previous-response
overlap.

Figure 7 enumerates the various combinations of current and
prior events that can occur in the randomized sequence. Fig-
ure 7a shows the alternative physical stimulus types and repre-
sents successful stimulus randomization: L’s were equally likely
to be preceded by L’s as by R’s, and, likewise, R’s were equally
likely to be preceded by L’s as by R’s. The rest of Figure 7 (b-e¢)
presents variou$ response types. The left side indicates the re-
sponses to current stimuli when they were attended along with
the possible previous response types that could have occurred
in that condition, and the right side indicates the correspond-
ing current and previous response types when those same cur-
rent stimuli were ignored.

An important but misleading ramification of successful stim-
ulus randomization is shown in Figure 7b; regardless of whether
a stimulus was attended (left side) or inattended (right side), it
was equally likely to be preceded by attended responses (A°’s)
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as by inattended responses (/’s). Although correct, this state-
ment is misleading because it is incomplete. It leaves out that
the preceding attended responses on the left side of Figure 7b
do not represent the same waveforms as the preceding attended
responses on the right side, and, similarly, the preceding inat-
tended responses on the left and right sides are not identical. In
Figures 7c and 7d, the attended responses to left and right stim-
uli are represented more specifically by the symbols L+ and
R+, respectively, and the inattended responses by L— and R—.
When the left stimuli are being attended (left side, Figure 7¢),
they are preceded by, and partially overlapped by, L+’s (at-
tended left responses) and R—’s (inattended right responses).
However, when the left stimuli are being ignored (right side,
Figure 7¢), they are preceded by L—’s (inattended left responses)
and R+’s (attended right responses). Similar considerations
apply for the current right-field flashes (Figure 7d). The prob-
lem is now clear: L+’s may not be the same as R+’s, even
though they are both attended responses, and, likewise, L—’s
may not be the same as R—’s even though they are both inat-
tended responses.

In a visual experiment at a midline recording site, the ERPs
labeled L+ and R+ may be quite similar to one another, as
might the two inattended responses. However, for lateral sites,
several flash-evoked ERP components tend to be larger contra-
lateral to the side of the flash (e.g., Mangun & Hillyard, 1987,
1988). Thus, at a right occipital site (e.g., O2), L+’s may be
substantially larger than R+’s, whatever other differences may
exist between them. The overlap, therefore, on the current L+
response from previous attended responses (i.e., L+s) will not
be the same as the overlap on a current L— from previous at-
tended responses (i.e., R+’s). By the same reasoning, the over-
lap from the corresponding previous inattended waveforms will
not be equivalent. Thus, despite complete stimulus randomiza-
tion, the current attended and inattended ERPs would be over-
lapped by different patterns of preceding waveforms.

Similar problems will arise at lateral sites in intramodal ex-
periments in other modalities where the ERPs are highly later-
alized (e.g., somatosensory). Auditory selective attention
experiments, on the other hand, involve ERP responses that are
not nearly so lateralized, and therefore would be less likely to
produce this artifact.

Cross-modal attention experiments are particularly vulner-
able to these problems, however, because of the substantial dif-
ferences between the ERPs in the two modalities. Take, for
example, an auditory/visual design in which the two stimulus
channels are clicks (C’s) and flashes (F’s), and consider the prior
overlap on click ERPs (Figure 7¢). When the clicks are attended
and therefore elicit current C+’s, the previous A’s and I'’s (Fig-
ure 7b) are C+’s and F—’s, respectively, whereas when the clicks
are ignored and therefore elicit current C—’s, the previous A’s
and I'’s are F+’s and C—’s. These two combinations of preced-
ing waveforms could easily be different at electrode sites all over
the head, including those on the midline. For example, at the
Oz site, ERPs to clicks are small, regardless of whether they are
attended or not. C+’s and C—’s would therefore be small at this
site (relative to the flash ERPs), and most of the overlap on the
current C+’s would come from F—’s, and most of the overlap
on the C—’s would come from F+’s. Because there is certainly
a strong attention effect on flashes at occipital sites, the F—’s
and F+’s would be quite different. Therefore, the ERP averages
for attended versus inattended clicks could be quite different at
Oz solely because of differential previous-ERP overlap, thereby
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giving the false impression of an attention effect at that site on
the auditory ERPs. Analogous errors could be induced at other
scalp locations.

The foregoing analysis illustrates how, despite complete
stimulus randomization, an actual attention effect upon the
ERP to a certain stimulus at a particular latency can produce
artifactual attention effects in the ERPs to other stimuli or in
the ERP to the same stimulus at the wrong latency. Perhaps one
of the greatest dangers of such overlap is that it could masquer-
ade as an attention effect at a very short latency. Even if such
artifactual effects are small, the early ERP components are also
small, and any attention effects on them would probably also
be small. Given that attention effects on early components have
significant implications for human information processing mod-
els, the potential problem of differential previous-response
overlap may be important to consider whenever ERPs are used
to probe the mechanisms of selective attention to streams of
short-ISI input. ‘

Quantification of Overlap From Previous Responses

In this section a scheme will be presented for mathematically
describing the distortion of ERP averages due to overlapping
previous responses in experiments where the ISI has been jit-
tered and there is more than one type of previous response.
Such a quantification enables an analysis of the differential
overlap distortion of ERPs that are to be compared for exper-
imental differences. As an example, a simple two-channel selec-
tive attention experiment will be examined in detail.

In a two-channel selective attention experiment a subject re-
ceives two classes of stimuli, which will be referred to here as
1’s and 2’s. These 1’s and 2’s could be, for example, left-field
visual flashes and right-field visual flashes or left-ear clicks and
right-ear clicks, or flashes and clicks if the experiment is cross-
modal. The two attention conditions are (a) attend to the 1’s
and (b) attend to the 2’s.

Rather than assume that stimulus randomization was success-
fully accomplished, cases when it was and when it was not will
be examined. It will be assumed, however, that identical stimu-
lus sequences were presented for both attention conditions, a
procedure often implemented as part of counterbalancing.

In a stimulus sequence of 1’s and 2’s, there are four event
distributions relevant to the present analysis:

D, (t) = the event distribution of 1’s preceding 1’s
Dy, (¢) = the event distribution of 2’s preceding 1’s
D, (t) = the event distribution of 1’s preceding 2’s
D5, (t) = the event distribution of 2’s preceding 2’s.

Because the same stimulus sequence is assumed to be pre-
sented for the two attention conditions, each of these four event
distributions is the same for both attention conditions. How-
ever, because successful stimulus randomization is not being as-
sumed here, these event distributions are not necessarily equal
to each other. Appropriately normalized versions of these dis-
tributions are used in the analyses.

Employing two attention conditions results in four types of
ERP responses:
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When the 1’s are being attended, there are A,’s (responses
to attended 1’s) and I,’s (responses to inattended 2’s). When
the 2’s are being attended, there are I;’s (responses to inat-
tended 1’s) and A4,’s (responses to attended 2’s).

Again assume that the waveforms of each of these responses
are time invariant.?

These definitions allow mathematical modeling of the aver-
aged previous-response overlap distorting each of the four types
of current ERPs. As described earlier, if the set of previous re-
sponses (i.e., the R,’s ) consists of essentially one type, the av-
eraged previous response (AuR,) can be modeled as the
convolution of the previous-event distribution with the previ-
ous-response waveform. In the present case, because each cur-
rent response can be preceded by (and partially overlapped by)
two kinds of responses, the averaged previous response would
be equal to the sum (or weighted average) of two convolutions.
For example, A’s (responses to attended 1°s) can be preceded
by A,’s and L,’s. Thus, the averaged previous response for
Ay’s is?

AURp for A]’S= (D“*Al)+ (DZI*IZ)' (1)
Similarly, the averaged previous response for I;’s is
AvR), for I}’s = (D * 1)) + (D, % A5). 2)

The critical comparison in this type of experiment is between
the ERP elicited by stimuli when they were attended and the
ERP elicited by those same stimuli when they were inattended;
thus, for example, the average of the A,’s and that of the I;’s
would be compared. The main interest here, therefore, is to
evaluate the differential distortion of these two ERP averages
due to the overlapping previous responses. To do this, the dif-
ference between the averaged previous response for the A;’s
and that for the I;’s is examined; this difference we will call the
differential averaged previous response (Diff. AvR,):

Diff. AvR,, for 1’s

= (AuvR, for A,’s) — (AuR,, for I,’s)

= (Dp*A,1) + (Dy L) — (D * 1) — (D31 % Ay)

)

= [(Duu*A4;) = (D1 *1)] — [(Da1 % A3) — (D % )]
Because convolution obeys the distributive property, this can be
simplified to
Diff. AvR,, for I’s = [Dy* (A — I})] — [Dyy % (A3 — L)].

3

3As described for the Adjar technique, the results for previous-
response overlap generally change little when this assumption is violated.
(Certain analogous analyses for subsequent-response overlap could be
somewhat affected, however, depending on the violation—see Wol-
dorff, 1989, Appendix 2C).

“Note that all variables in this expression, including AvR,, for A,’s,
are functions of time, although the time function symbolism has been
dropped for simplicity of expression. The more precise expression for
Equation 1 would be: AvR, () for Ay’s = [Dy; (2) ¥ A ()] + [Dy (2) *
1,(t)]. Also note that D;; and D,; are assumed here to have been nor-
malized with the same constant (i.e., the total number of current 1’s),
so that the two convolutions in this sum are appropriately weighted rel-
ative to each other.
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The differential previous-response overlap for the 1’s (i.e.,
the differential distortion of the ERP average for attended 1’s
and the ERP average for inattended 1’s) is the longer latency
portion of this differential averaged previous response. Thus,
the differential overlap distortion for the 1’s can be expressed
as the longer latency portion of the difference between two con-
volutions, namely the convolution of D;; with the attention ef-
fect for 1’s and the convolution of D,; with the attention effect
for 2’s.

Similarly, the differential overlap for 2’s can be expressed as
the later portion of

Diff. AvR, for 2’s = [Dy* (A — L,)] — [D1a% (4; — I))].
' C))

Equations 3 and 4 encapsulate the differential previous-
response overlap that can occur in conventionally collected ERP
averages in a two-channel selective attention experiment. By set-
ting conditions on some of the variables involved, these equa-
tions can be simplified to examine the differential overlap in
various experimentally relevant cases.

Case 1
There are no attention effects for either channel. That is,

Aly— I, =0 (or more precisely: A,(¢) —I,(¢) =0),
and
A, — I, =0 (or more precisely: A,(¢) — L(¢) =0).

Clearly, if there are no attention effects for either channel,
Equations 3 and 4 both reduce to zero, and there will be no dif-
ferential AvR,,.

Case 2
All event distributions are equal:

Dy =D, =Dy =Dy=D;

and the attention effects for the two stimulus channels are
equal:

A1 -L)=(A,-L)=(A-1D).
Substituting in Equations 3 and 4,
Diff. AvR, for I's=[D* (A —-1I)] = [D* (A -] =0,
Diff. AvR, for 2’s = [D* (A — I)] — [D* (A — I)] = 0.

Under these conditions there is also no differential AuR, and,
hence, no differential overlap. The condition that all the event
distributions are equal will be met when stimulus randomization
and ISI randomization have been successful. However, to as-
sure no differential overlap, the additional condition that the
attention effect is symmetric (i.e., equal) for the two stimulus
channels must also be true.

Case 3
All event distributions are equal:

Dyy = Dy = Dy; = Dy = D;
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but the attention effects for the two stimulus channels are un-
equal:

(A, — 1) # (A, — D).
Then, substituting into Equations 3 and 4:

Diff. AvR,, for I’'s = [D* (A; — I})] — [D* (4, — IL)]
=D*[(A, - I,) — (A, - L)};

Diff. AvR, for 2’s = [D* (A, — L,)] - [D* (A, — L})]
=D=x% [(A2 - 12) - (A] - Il)]
= — (Diff. AvR,, for 1’s).

This case is especially important because there are many ex-
perimental situations in which the attention effects for the two
stimulus channels will not be equal to each other at every elec-
trode site. The above analysis confirms that in such cases, de-
spite perfect randomization of stimuli and ISIs, there can be
differential overlap distorting the ERP averages; moreover, the
analysis specifies that the differéntial overlap for one of the two
channels will be approximately equal in magnitude and shape
but of opposite polarity to the differential overlap for the other
channel. In addition, the magnitude of the differential overlap
is proportional to the asymmetry of (i.e., difference between)
the attention effects for the two stimulus channels.

As can be seen in the above equations the amount of differ-
ential overlap is determined not by the degree of asymmetry
between the ERP responses themselves for the two stimulus
channels but rather by the degree of asymmetry of the attention
effect. However, those experiments with significantly different
responses for the two stimulus channels also tend to have un-
equal attention effects. (For cross-modal experiments this is ob-
vious; for lateral asymmetries during intramodal visual
attention see, for example, Mangun & Hillyard, 1988.) Thus,
these situations are quite vulnerable to such artifacts.

Also, the differential overlap is not directly equatable with
the asymmetry of the attention effects but arises from the con-
volution of this asymmetry with the event distribution. This is
therefore equivalent to low-pass filtering the asymmetry of the
attention effects and shifting the result backward in time. Thus,
not only does jittering the ISI mitigate adjacent-response over-
lap in general, it also directly mitigates the risk of differential
overlap upon attended and inattended waveforms. In contrast,
using a constant ISI in experiments with unequal attention ef-
fects for the two stimulus channels clearly carries with it a
greater risk of this kind of artifact.

The foregoing analysis implies that the observation of pre-
sumed attention effects in the two channels that are similar in
waveshape but of opposite polarity could be an important clue
that differential overlap has occurred. However, because differ-
ential overlap from previous responses would summate with any
real attention effects on the current response, the opposite po-
larity clue could be easily camouflaged. Thus, this clue may be
most evident during the prestimulus baseline period, where no
real attention effects could exist.

Even prestimulus effects, however, may be obscured under
certain conditions. Consider the case where the prestimulus
baseline period is fairly short and the differential overlap is of
rather low frequency. In such a case the baselining of the cur-

-
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rent ERP, which sets the voltage to zero during the prestimulus
period (or some portion thereof), will tend to negate differences
in this period and displace the differential overlap, and there-
fore the artifactual “attention effect,” toward the longer laten-
cies of the current waveforms. This possibility underscores the
more general point that including a substantial length of pre-
stimulus period in the averaging epoch is important in check-
ing for previous-response overlap, whether differential or not.

Case 4
Event distributions (D’s) are not all equal, but the attention ef-
fects for the two stimulus channels are equal:

(Ai—-L)=(A,—-L)= (A_ =1I).

There are many different ways in which the event distribu-
tions might be unequal. For example, event distributions could
be skewed toward different ends of the ISI range (Figure 8a),
or they could have different overall frequencies (Figure 8b).

One reason event distributions might show such inequalities
is simply an inadequate number of trials. If the number of tri-
als is low, just specifying a particular ISI probability distribu-
tion (e.g., rectangular) and the relative probabilities of stimulus
types may not necessarily result in actual ISI distributions and
stimulus ratios very close to the desired values. If one particu-
lar stimulus presentation sequence that is biased in some way
is used repeatedly (such as across subjects), the distributions
would then be unequal in a systematic way. One way to miti-
gate this possibility, therefore, is to employ a number of differ-
ent stimulus presentation scenarios.

Event distributions may be unequal even when the number
of trials is large, however. For example, say production of a
random sequence of 1’s and 2’s in equal proportion is desired.
To also control for extremes in the local probability of the se-
quence, one might add the restriction that no more than, say,
four of one type of stimulus could occur in a row. However,
such a restriction will slightly undermine the randomness of the
random sequence generator, in that it will result in a slightly
greater probability for a “switch” of stimulus type in the se-
quence (i.e., 1,2 or 2,1) rather than for a stimulus repetition or
“same” (1,1 or 2,2). Thus, the D,, and D, distribution values
will be slightly larger on the average than those of D,, or D,,
(Figure 8b). This case of unequal numbers of sames and switches
can produce particularly insidious artifacts, as shown below.

Subcase (of Case 4). Number of sames is not equal to the
number of switches:

Dy =D, =D,
and
Dy; = Dy = Dy, # Dy,
but the attention effects for the two stimulus channels are equal:
A -L)=A—-L)=A-1D).
Then, substituting in Equations 3 and 4:

Diff. AvR,, for I’s = [Dg, % (A — I)] — [Dg* (A — I)]
= (Dg — Dy,) * A4 -1);

(a)

[0 t
(b)

[o ¢

Figure 8. Examples of unequal previous-event distributions. D, is the
distribution of 1’s preceded by 1’s, D5, the distribution of 1’s preceded
by 2’s. (a) Skewing across the ISI range; (b) unequal total numbers.

Dl/f' Ava fOI' 2’5 = [Dsa* (A - I)] - [Dsw* (A - 1)]
= (Dyg — Dy ) % (A = 1)
= (Diff. AvR,, for 1%).

Thus, even though the attention effects are identical for the
two stimulus channels, differential averaged previous response
can still result. Furthermore, the resulting differential overlap
would be the same for the two stimulus channels. There is no
clue of opposite polarity to possibly alert the experimenter that
differential overlap may be occurring and contributing to what-
ever actual attention effects may be present. Indeed, obtaining
a similar attention effect for the two channels in an intramodal
experiment is a result that normally would tend to give an ex-
perimenter more confidence in the reliability of the effect.

A relatively simple way to check for this problem is to make
sure that the stimulus sequences contain approximately equal
numbers of sames and switches. If so, this particular artifact
may be ruled out. If they are not equal, then such an artifact
might have occurred, and further investigation may be war-
ranted along the lines described later in this paper.

Although this section has focused on differential overlap be-
tween attended and inattended ERPs in selective attention ex-
periments, differential overlap is a potential problem whenever
one wants to compare ERPs (or any physiological response
measures) that were collected at stimulus rates fast enough to re-
sult in overlapping responses. Unequal averaged overlap on the
ERP responses being compared can masquerade as significant
differences between the responses and/or seriously distort true
differences that might exist.

Further Problems Due to Response Overlap

Comparisons Between Difference Waves

and Individual ERPs

Even if a combination of stimulus randomization and ISI jit-
ter has effectively eliminated differential overlap between two
ERP averages that are to be compared, there still could be sub-
stantial, albeit approximately equal, overlap in each of these in-
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dividual averages. In such a case, the difference wave will have
this overlap subtracted out, whereas the individual averages will
not. Accordingly, any conclusions concerning the relationship
between the waveform structure, distribution, or componentry
of the difference wave and that of the individual ERPs could
be erroneous.

Sequential Analysis

When ERPs are averaged such that adjacent stimuli are nof ran-
domized, the problem of differential overlap at short ISIs is
even greater, placing constraints upon what phenomena may be
investigated with ERPs. One of the most serious constraints is
the difficulty in analyzing potentially important sequence ef-
fects—that is, the physiological and psychological effects of the
previous stimulus type on the ERP to the current stimulus. The
problem arises because a sequential analysis requires dividing
the ERP “Full Averages” into subaverages based on different
subsets of the previous stimulus types and/or ISI subranges.
This procedure, which clearly violates the assumption of ran-
domized adjacent stimuli, results in the physiological effects of
the previous stimulus type (or ISI) on the current ERP being
confounded with differential overlap from the ERPs to those
differing previous stimuli. Further, because each of the current
ERP subaverages is preceded by only one particular class of
previous response, perhaps occurring within a narrowed ISI
range, there is generally more residual distortion from previous
responses (less “smearing out”) in each of the subaverages than
in the Full Average.

There are two main variables of interest in a sequential anal-
ysis: previous ISI subrange and previous stimulus (or response)
type. To illustrate this analysis, a selective attention example
will again be employed, but sequential effects also play an im-
portant role in other classes of psychophysiological phenomena
(e.g., memory formation and decay, language processing).

ISI subrange. Consider some relatively undistorted averages
from an auditory selective attention experiment. Figure 9a
shows the ERP averages for attended and inattended left-ear
tones. Each of these two averages are Full Averages because the
ERP responses that were included in them were preceded by all
possible previous stimulus types across the entire ISI range of
120-320 ms. The only criterion for including a response in one
of the averages or the other was whether it was attended or not.

Suppose, however, one wanted to examine the effects on
these ERPs of having the previous stimulus occur 120-220 ms
versus 220-320 ms before. The data can be reaveraged accord-
ingly (Figures 9b and c). From the observation that the prestim-
ulus baselines are not flat and are quite different between the
two pairs of subaverages, it is apparent that there is substantial
previous-ERP overlap. For example, the negative wave peak-
ing at about —70 ms in Figure 9b is the partially “smeared-out”
N1 of the preceding ERPs, whereas the positive wave peaking
at about —70 ms in Figure 9¢ results from the P2s of the pre-
ceding ERPs. This distortion certainly continues past the pre-
stimulus time into the current waveforms. Therefore, any true
effect of these ISI differences on the current ERP is confounded
with the differential previous-ERP overlap.?

5Note that the presence of substantial overlap in the individual sub-
averages, but not in the Full Averages, underscores the relationship be-
tween the width of the ISI jitter and its effectiveness as a low-pass filter.
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Figure 9. Data example of previous-response overlap when attempting
sequential analysis based on previous ISI subrange. ERPs are to left
standard (nontarget) tones at the C3 site from a short-ISI selective at-
tention experiment, grand averaged across subjects. The attended and
inattended Full Averages (a) consist of ERP responses preceded by all
possible previous response types elicited across the entire possible ISI
range of 120-320 ms. These trials were sorted into subaverages (b, c)
based on whether the previous stimulus came within the ISI subrange
of 120-220 ms (b) or 220-320 ms (c). Note the substantial overlap from
previous responses distorting the subaverages in (b) and (c) and that this
overlap is quite different between (b) and (c).

One comparison that could validly be made would be to de-
rive the attentional difference wave formed by subtracting the
inattended from the attended ERP in Figure 9b and compare it
with the analogous difference wave from Figure 9c, thereby
comparing the ERP attention effects for the two previous ISI
subranges. However, this comparison clearly illustrates the ca-
veat mentioned above that even though the attentional differ-
ence waves for these two ISI subranges could be compared with
each other, they could not be compared with the individual
ERP subaverages from which they were derived. This is because
the individual subaverages have substantial previous-response
overlap distorting their waveform structure, whereas the differ-
ence waves would (presumably) have this overlap subtracted out.
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Previous stimulus (or response) type. Use of ERPs to inves-
tigate the physiological and psychological effects of the type of
the previous event is also subject to severe confounds at short
ISIs. For example, consider partitioning the Full Average for
attended left-ear responses (L+’s) and the Full Average for in-
attended left-ear responses (L—’s) into two subaverages each,
based on the two possible previous response types in each con-
dition:

Subaverages

— 1 @+).L+

Full Average

L+ ——

— 2] (R—-).L+

Subaverages

— Bl @L-).L-

Full Average

L— —

> [4] (R+).L-—-

There are a number of comparisons one might want to make
among such subaverages. For example, one might want to com-
pare Subaverage 1 with Subaverage 2 to evaluate the effect of
previous stimulus type on an attended left-ear ERP response.
Or, one might want to compare the attention effect for left-ear
stimuli when the previous stimulus was in the same ear (i.e.,
Subaverage 1 minus Subaverage 3) with the attention effect for
left-ear stimuli when the previous stimulus was in the opposite
ear (i.e., Subaverage 2 minus Subaverage 4). However, because
these various subaverages all have different previous ERP re-
sponse waveforms overlapping them, analyses such as these
would be confounded (see Woldorff, 1989, for further discus-
sion of these comparisons).

Procedures for Removing the Overlap:
The Adjar Technique

Having examined some of the ways in which adjacent-response
overlap can distort ERP waveforms in psychophysiological ex-
periments, we may now consider an approach for removing the
overlap distortion in recorded data. A set of algorithms for es-
timating and removing adjacent-response overlap under certain
conditions is proposed. This method, termed the Adjar (adja-
cent response) technique (or filter), is based on the conceptual
framework just developed. Although this technique will gener-
ally be most effective when its application is planned as part of
the design phase of an experiment, there are many cases where
all aspects of the procedure, including evaluating whether and
how to implement it, could be performed after data collection.
This method will be illustrated primarily in the context of selec-
tive attention experiments, but its principles can be applied
more broadly.

There are two main levels to the Adjar technigue, a nonit-
erative level for removing previous-response overlap only (Level
1) and an iterative level for removing distortion from both pre-
vious and subsequent overlap (Level 2).

Level 1 enables the study of sequential effects (i.e., the phys-
iological and psychological effects of previous event type and
ISI) in short-ISI ERP experiments by subtracting out the dif-
ferential distortion from previous-response overlap. However,
the ISI jitter must have been sufficient to have yielded Full
Averages (i.e., averages based on all the previous stimulus types
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and ISIs) that are relatively undistorted, as these are used to
estimate the overlapping previous responses that need to be sub-
tracted out. This level may also be employed to remove previous-
response overlap from Full Averages themselves if they are only
slightly distorted.

Level 2 is more complicated to implement than Level 1, but
it is also more powerful. Basically, it allows removal of over-
lap from Full Average waveforms that were initially more dis-
torted (more than just slightly) because they were obtained
using shorter ISIs with insufficient jitter (e.g., see Figure 1b).
This distortion, which may have resulted from overlap by both
previous and subsequent responses, is removed by a series of it-
erations that converge toward the best estimates of the “true”
Full Average waveforms. In addition, if the effects of previous
event type and ISI are of interest, these Adjar-corrected Full
Average waveforms can then be used to estimate the previous-
response overlap distorting sequence-based subaverages.

Adjar Level 1

Filtering subaverages. Using the example of a selective atten-
tion experiment, this level would start with the standard set of
ERP data consisting of the attended Full Average and the in-
attended Full Average (an example of these for left-ear tones in
our example experiment was shown in Figure 9a). These are
called “Full” Averages because the responses that went into
them were preceded by all of the possible previous stimulus
types at all of the possible previous ISIs over the entire 120-
320-ms range. To proceed with Level 1 analyses, these Full
Averages must be relatively undistorted (obtained with a suffi-
ciently wide ISI jitter range). A useful criterion for determin-
ing whether this has been accomplished is that the prestimulus
baseline should be relatively flat; including a substantial length
of baseline in the recording epoch will clearly facilitate such a
check. There may be some residual random EEG fluctuations
in the baseline, but there should not be what looks like a time-
locked signal (e.g., see Figures 1a and b); this will usually be
clearest in the grand average (see Figures 9b and c). A better in-
dication of the amount of overlap distortion of the Full Averages
can be gained through application of the technique.

To illustrate Level 1, consider reaveraging these data such
that the attended and the inattended Full Averages for left-ear
stimuli are each subdivided into four subaverages, based on fac-
torial combinations of previous ISI subrange (short or long) and
previous stimulus type (left or right tone) (Figure 10). The grand
average waveforms of these eight left-tone subaverages for the
Cz site in our attention experiment example are shown in Fig-
ures 1la-d. If averaged together, the four attended left-tone
subaverages of this figure would be equal to the attended left-
tone Full Average for this site, and the four inattended subav-
erages would be equal to the inattended Full Average.®

One can easily infer from Figure 11 that there is substantial
differential previous-response overlap superimposed upon these
various subaverages from the observation that the prestimulus
baselines are not flat and look quite different in each of the sub-

SIn this experiment there were also infrequent, slightly deviant “tar-
get” tones (intensity decrements) in each ear; the task was to detect those
in the attended ear from amongst the more frequent “standard” tones.
For this discussion, however, only ERP averages to standard tones (pre-
ceded by only standard tones) are considered. A detailed discussion of
adjacent target ERPs can be found in Woldorff (1989).
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Figure 10. Schematic representation of the subdivision of each of the attended and inattended Full Averages of left-ear ERP
responses into four subaverages based on previous stimulus type and ISI subrange. L’s and R’s represent ERPs elicited by left-
and right-tone responses, respectively, which are either attended (+) or inattended (~). The subscript F stands for Full Aver-
age. The large letter on the right side of the box for each subaverage represents the current response, and the smaller preced-
ing letter represents the previous response elicited in the indicated ISI range. For example, Subaverage 1 consists of all attended
left-ear responses that were (immediately) preceded by an attended left-ear response elicited 120-220 ms previously, and so on.

averages. In all of these cases, the distortion undoubtedly con-
tinues past the prestimulus period into the current waveform
itself. The goal of the Level 1 Adjar procedure is to subtract out
these overlapping responses so that we can compare the true at-
tended and inattended responses elicited by the current stimuli
when preceded by these various subsets of previous events.

Consider Subaverage 1 for a particular subject. The intent
is to derive an estimate of the average of the overlapping pre-
vious ERP responses, which in this case are the ERPs elicited
by attended left-ear tones that occurred 120-220 ms previously.
As outlined earlier and further described below, the average of
these overlapping previous responses can be modeled as the
convolution of the attended left-tone ERP waveform [i.e., the
R, (#)], with the appropriate previous event distribution [D,(¢)].
The first step toward removing the distortion is therefore deter-
mining this normalized event distribution. Because the digitiza-
tion rate for this experiment was 2 ms, the number of attended
left stimuli that were preceded by attended left stimuli in each
previous 2-ms interval in the short (120-220-ms) ISI range must
be ascertained. These 50 numbers (i.e., one for each 2-ms pre-
vious 'ISI interval) are converted to percentages to yield the
normalized previous-event distribution corresponding to this sub-
average. These normalized numbers are D,(—120), D,(—122),
D,(—124), and so forth.

Assuming all these previous attended left-tone ERP responses
were essentially identical and that a good estimate of the at-
tended left-ear ERP waveform was available, the next step
would be to convolve such a waveform with the above-described
previous-event distribution. That is, one would take such a
waveform and shift it over to the left 120 ms and weight it by
D,(—~120), shift it over 122 ms and weight it by D,(—122),

and so on. For the present case, this shifting and weighting
must be done 50 times, once for each of the 50 2-ms intervals.
These 50 time-shifted and weighted waveforms can then be
added up to yield, for this particular subject, the convolution
of the previous attended left-tone response with the appropri-
ate previous-event distribution. The later portion of this con-
volution waveform should then be a good estimate of the
distortion present in Subaverage 1 due to the attended left-tone
responses elicited 120-220 ms previously. This convolution
waveform can then be subtracted from Subaverage 1 to obtain
an undistorted, or filtered, Subaverage 1.

Two important issues must be addressed in this scenario,
however. First, which attended left-tone ERP waveform should
be convolved in the above way? Second, considering that all
those previous attended left-tone ERPs were probably not all
identical, why should the convolution of one attended left-tone
ERP waveform provide a good estimate for their average? The
answer to the first question is that, in general, the best wave-
form to use for each subject for this convolution is the Full
Average of attended left-tone ERPs for that subject because the
Full Average is the best estimate available for those preceding
attended left-tone ERPs. This proposition and the answer to the
second question are discussed below.

The proposition that the convolution of the Full Average
provides a good estimate of the average of the corresponding
previous responses is central to the Adjar technique. A distinc-
tion should be made, however, between an ideal “true” Full
Average ERP, which is defined here as one completely free of
both residual EEG noise and adjacent-response overlap, and the
recorded Full Average ERP, which is the one actually available
to the experimenter. The present Level 1 analysis will assume
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Figure 11. Grand average ERPs at the Cz site for the eight left-tone
subaverages depicted in Figure 10. Note the substantial differential pre-
vious-response overlap distorting these various subaverages. Data from
Woldorff and Hillyard (1991).

that the recorded Full Average ERP is a very good estimate of
the true ERP; therefore this distinction can be ignored for now,
allowing us to first focus on why the (true) Full Average re-
sponse itself can serve as a good estimate of the previous re-
sponses. In Appendix 2, this issue is examined in more detail,
and the magnitude and nature of the error involved in using the
recorded Full Average response waveform are discussed.

In earlier analyses in this paper, waveform invariance gen-
erally was assumed —namely, that the ERP response to a par-
ticular type of stimulus, say an attended left-ear tone, is always
approximately the same no matter when it occurs. However, in
investigating sequence effects, we are now acknowledging that
responses may differ as a function of characteristics of the pre-
ceding event, and, in fact, that these differences may be of con-
siderable interest. Thus, the proposition that any one single
response waveform, such as the attended left-tone Full Average,
can be used to estimate the overlap contributed by all of the dif-
ferent previous attended left-tone responses that actually oc-
curred might not seem obvious. The key to this proposition,
however, is that the combination of responses that make up the
Full Average is approximately the same as the combination that
would be expected to make up the average of the previous re-
sponses elicited at any particular prior time point (or time bin),
and it is the average of the previous responses at each of the
various prior time points that actually contributes to the total
averaged previous response (i.e., to that which we have been
calling AvR,).
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This point may be clarified through the following example.
Consider all the previous attended left-tone responses that were
elicited at the particular previous time point —¢; (or, more ap-
propriately, in the —ith time bin), where —¢, is between —120
and —220 ms. Assume there were M; of such responses (i.e.,
D,(—t;) = M;/N, where N = the total number of current tri-
als) and that these M; previous responses were not all identical,
but could vary according to which event came before them and
how long ago. However, these second-order previous events
(i.e., the events previous to the M, immediately previous re-
sponses) would have been randomly distributed, and hence the
M; immediately previous responses were randomly likely to be
any of the various possibilities for attended left-tone responses.
Therefore, the best estimate of the average of these M; re-
sponses is the average of all these possibilities, which is just the
Full Average.” In other words, the contribution from the M;
responses that actually occurred at —¢; ms to the total averaged
previous response (i.e., that which resulted from the responses
from all previous time points) is approximately equal to what
the contribution would have been if all of the M, responses had
actually been identical to the Full Average. Because this argu-
ment holds for the arbitrary previous time point of —¢; ms, it
is true in general at all the previous time points. Therefore, the
convolution (i.e., the shifting-weighting-summing) of the Full
Average with the entire event distribution will give a good ap-
proximation of the (total) averaged previous response, AvR,,.

Thus, it does not matter that the attended left-tone responses
that actually occurred at all those various previous time points
were not all of one type but could have been any of a number
of different possibilities. The sum of the contributions from all
of these possibilities to the (total) averaged previous response
is (approximately) equal to what the contribution would have
been if all of the previous responses had been equal to the Full
Average response. (For further discussion of this issue, see Ap-
pendix 2.)

Once the estimate of the (total) averaged previous response
for Subaverage 1 has been obtained for a particular subject, it
is then simply subtracted from Subaverage 1 for that subject.
The other seven left-ear subaverages would be Adjar filtered in
an analogous way, using the appropriate event distribution and
appropriate Full Average to estimate the previous-ERP overlap
in each case.

The Level 1 procedure described above was applied to the
eight left-tone subaverages for all the subjects from our exam-
ple experiment. The grand averages of the estimated previous-
response overlap for each of these eight subaverages are shown
in the middle column of Figure 12, and the grand ayerages of
the resultant filtered subaverages are shown in the right column.
A comparison of these filtered subaverages with the unfiltered
subaverages (left column) shows how much less distorted the
prestimulus baselines have become and therefore how close the
previous-response overlap estimates were to the actual overlap
in the prestimulus period. Although such a result does not guar-
antee that all of the distortion from the overlapping previous
responses has been successfully subtracted out, it indicates that
the bulk of it has been removed. Moreover, it provides support
for the argument that convolving a single response waveform

"Note that this conclusion would still hold when there was addi-
tional random variation of these M; responses that was unrelated to
what event came before them —that is, the Full Average would still be
the best estimate of the average of the M; responses.
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Figure 12. Adjar-filtering process applied to the eight left-tone subaverages depicted in Figure 10 and shown in unfiltered form
in Figure 11. The original unfiltered subaverages are shown again (left column), juxtaposed with the estimates of the previous-
response overlap (middle column) and the corresponding Adjar-filtered subaverages (right column) obtained by the subtrac-
tion of these estimates. Data from Woldorff and Hillyard (1991).

does indeed provide a good estimate of the average of the pre-
ceding responses that probably were varying. Now that this dis-
tortion has been removed, the influence on the left-tone ERPs
and ERP attention effects of what stimulus came before and
how long ago it occurred can now be examined. (The filtered
subaverages also can be collapsed across previous ISIs to con-
centrate on the effects of previous stimulus type, or across pre-
vious stimulus type to concentrate on the effects of previous
ISIs.)

It is important to emphasize that this filtering operation sub-
tracts out overlapping scalp potential changes that were time-
locked to the previous stimulus, leaving those that were time-
locked to the current stimulus. Comparisons between the filtered
subaverages will therefore reflect processing interactions that
are time-locked to the current stimulus. However, such inter-
actions must be interpreted with care. The most straightforward
effects these interactions would be likely to reflect are changes
in the processing of the current stimulus as a function of pre-
vious events, such as an N1 component or subcomponent of the
current ERP being bigger or smaller depending on the preced-
ing event type or ISI. These changes will certainly be time-
locked to the current stimulus. However, if there are changes
in the processing of the previous stimulus because the current
stimulus arrived while that processing was still occurring, then
these changes may well be time-locked to the current stimulus
as well (i.e., to the arrival of the information necessary for the
interaction), rather than to the previous stimulus. If so, these
changes would remain as part of the response to the current
stimulus rather then having been subtracted out during the Ad-
jar filtering.

One might argue that this second type of change should be
attributed to the processing of the previous stimulus even
though it is actually time-locked to the current stimulus. How-
ever, if it is time-locked to the current stimulus, then in some
sense it should also be considered a reflection of the processing
of the current stimulus. It is probably most accurate to attribute
such an effect to the processing interaction of the two stimuli,
where the processing of the current stimulus interacts with the
ongoing processing of the previous stimulus. Regardless, the re-
moval of distorting, overlapping ERPs that are time-locked to
the previous stimulus should prove to be a useful technique for
understanding the true sequential interaction effects.

Filtering Full Averages. The Level 1 technique may also be
employed to remove small amounts of previous-response over-
lap from the Full Averages themselves given that they are only
slightly distorted. This technique might be particularly useful
when a combination of randomization and ISI jitter has elim-
inated most of the overlap, but some overlap may still remain
that could be distorting the small early waves of the current Full
Average ERPs.

In such a case, because the recorded Full Average ERPs are
only slightly distorted, they are still fairly good estimates of the
true Full Average responses and therefore may be used to esti-
mate average previous responses. Assuming subaverages are be-
ing investigated, the procedure is a simple extension of the one
previously outlined. Because a Full Average is just an average
of subaverages, simply averaging the filtered subaverages to-
gether will yield filtered Full Averages. In-addition, the over-
lap estimates calculated for each of the subaverages can be

-
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Figure 13. Adjar filtering of the ERP Full Averages for the left-ear tones at the C3 site. Left column: original unfiltered Full
Averages; middle column: estimates of previous overlap; right column: Adjar-filtered Full Averages. These resulted from col-
lapsing (averaging) together the appropriately corresponding subaverages for this site. Although there was some distortion from
previous responses even in these Full Averages, it was fairly small in magnitude and was not different for the attended versus
the inattended average. Data from Woldorff and Hillyard (1991).

averaged together (in an appropriately weighted way) to exam-
ine the estimated total previous-response overlap that was dis-
torting each of the original Full Averages. This, in fact, is the
most direct way to examine whether the overlap on the Full
Averages actually was negligible and whether it was differential
or not (e.g., different for the attended Full Average than for the
inattended Full Average).

For the selective attention example, Figure 13 shows some
unfiltered and filtered left-tone Full Averages and the corre-
sponding total overlap that was estimated and removed. Note
that there was indeed some overlap in each of the Full Aver-
ages, but it was not very large, and it was not differential for
the attended and inattended stimuli.

In the procedure just outlined to obtain filtered Full Aver-
ages, the original unfiltered Full Average waveforms are used
to estimate the overlap on themselves so that it can be removed,
although this was accomplished by filtering subaverages and
then collapsing them together. If one were interested only in
Full Averages, the steps involving subaverages could be omit-
ted. This would then be equivalent to calculating each of the
convolution terms on the right side of an equation such as
Equation 1 and summing them (or, depending on normalization
considerations, averaging them together in an appropriately
weighted way).

Adjar Level 2

It has been argued above (also see Appendix 1) that in cases
where the Full Averages are at most only slightly distorted,
using them as the waveforms to be convolved in the application
of Level 1 will still be effective in removing previous-response
overlap. If Level 1 has already been applied, a straightforward
way to gauge the relative degree of distortion of the Full Aver-
ages is to examine the estimated total previous-response over-
lap distorting them, as outlined earlier. If this distortion looks
small relative to the Full Averages themselves, then the assump-
tion that they were only slightly distorted is probably reason-
able, and the application of Level 1 alone adequate.

In cases where the Full Averages are more than just slightly
distorted, such a single-step process might not provide adequate
removal of overlap. It is argued in Appendix 2, however, that
even in such cases, assuming the ISI was jittered, applying the
algorithms of Level 1 will generally provide more gain than loss

in removing systematic distortion due to previous-response
overlap, while introducing only negligible additional random er-
ror. This suggests that application of these algorithms in an ap-
propriate iterative way should remove more and more of any
remaining distortion with every iteration. This is the approach
of Level 2.

The Level 2 procedures are more complex in implementation
tharrthose of Level 1 but have correspondingly greater analytic
capability. Level 2 allows removal of overlap distortion, due to
both previous and subsequent responses, from Full Average
waveforms that are distorted because they were obtained under
conditions of insufficient ISI jitter. As a final step, Level 2 can
also include the procedures of Level 1 for analyzing the effects
of previous event type and ISI, in that once relatively undis-
torted Full Averages have been obtained, they can be used to
estimate the previous-response overlap distorting sequence-
based subaverages.

Level 2 involves a series of iterations that result in a conver-
gence toward the true Full Average waveform. There are vari-
ous ways that the estimation and convergence process could be
implemented, depending on the specifics of the data set, but
they would generally all employ a similar approach. One se-
quence of steps is outlined below:

1. Start by assuming that the original Full Average waveforms
are the best estimates available of the overlapping subse-
quent responses.

2. Convolve these subsequent-response estimates with the ap-
propriate subsequent-event distributions, obtaining a first
estimate of the overlapping averaged subsequent response,
AuvR;,, for each current Full Average.

3. Subtract these estimates from each original Full Average,
thereby obtaining better estimates of these current Full Aver-
age responses, especially their later portions.

4. Now take these better estimates of the current responses to
be the best estimates of the previous responses.

5. Convolve these previous-response estimates with the appro-
priate previous-event distributions, obtaining an estimate of
the overlapping averaged previous response, AvR,,, for each
current Full Average.
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6. Subtract out these averaged previous-response estimates
from the original Full Averages (not those obtained in Step
3), thereby obtaining even better estimates of the current re-
sponses, especially their early portions.

7. Now iterate. That is, use the better estimates (those obtained
in Step 6) of the current responses as better estimates of the
subsequent responses. Return to Step 1 and repeat process.
Continue iterations until changes between the waveform es-
timates obtained in successive iterations are negligible.

8. The final outcome of these iterations will be estimates of both
the averaged previous-response overlap and the averaged
subsequent-response overlap for each original Full Average
waveform, along with two sets of Full Average waveforms:
(A) one set with the final previous-response estimates sub-
tracted out (but not the subsequent) and (B) one set with the
final subsequent-response estimates subtracted out (but not
the previous). As a final step, subtract the final subsequent-
response estimates from each corresponding Full Average in
set A, thereby deriving Full Averages with both previous-
and subsequent-response estimates subtracted out. (Or,
equivalently, subtract both final previous- and final subse-
quent-response estimates from the original Full Averages.)®

An application of these procedures to simulated data is
shown in Figure 14. A series of double calibration pulses
(square waves) were generated at short ISIs (150-350 ms). The
result of conventional ERP-like averaging of these (shown in
the thin trace) clearly has distortion from overlap from both the
previous and subsequent double-cal “responses.” By applying
.the methodology summarized in the steps listed above, the more
veridical waveform (shown in the thick trace) was obtained.

Applications of the Level 2 procedures to waveforms that
are more ERP-like are presented in Figures 15 and 16. For Fig-
ure 15, an auditory ERP waveform obtained in our laboratory
was taken as the original “true” undistorted Full Average wave-
form for a simulated short-ISI experiment. A computer then
generated the overlap-distorted average that would be obtained
if such an ERP waveform were repeatedly elicited at ISIs of
180-300 ms. It was then assumed that the overlap-distorted
waveform was what the experimenter would have recorded and
was therefore what would be available for application of the
Level 2 Adjar procedures. Figure 15d shows the final waveform
estimate obtained with the procedures after three full iterations
(i.e., including carrying out final Step 8), superposed on the true
original waveform for comparison.

Figure 16 shows a more complicated simulation with two
types of ERP waveforms. An auditory ERP and a visual ERP
were taken as the original “true” undistorted responses, and the

81t may seem that a more straightforward way to carry out the Level 2
iterations is to calculate and subtract the subsequent- and previous-overlap
estimations in parallel at the same iteration, rather than calculating and
subtracting them in separate sequential iterative steps. Although the se-
quential approach is more complicated, it both converges more quickly
and removes second- and higher-order overlap at the same time the first-
order is removed (see Woldorff, 1989, Appendix 2B). More importantly,
however, the parallel approach can run into a nettlesome but subtle con-
vergence problem — namely, that the solutions can begin to converge in
the first several iterations, but then, under certain conditions, start to di-
verge as the iterations continue. This divergence is due to a selection and
accumulation of power at the frequency whose period is twice the aver-
age ISI. This approach is therefore not recommended.

M.G. Woldorff
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Figure 14. Example of the application of Level 2 Adjar technique to
simulated data. Light trace is the original average of 200 double-pulse
“responses,” where the first pulse of the pair began at time 0 and lasted
100 ms and the second began at 180 ms (relative to the trigger) and
lasted 20 ms. ISIs of the triggers ranged from 150 to 350 ms. Note the
distortion from overlap from both the previous and subsequent double-
pulse responses. Bold line is after applying Level 2 Adjar filtering.
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Figure 15. Simulation of Level 2 procedures with an auditory ERP. (a)
Original auditory ERP waveform, used here as the original “true” un-
distorted Full Average waveform in a simulated short-ISI experiment.
(b) Computer-generated overlap-distorted average that would be ob-
tained if such an ERP waveform were repeatedly elicited in an experi-
ment at ISIs of 180-300 ms (includes first-, second-, and third-order
overlap, both previous and subsequent). (c) Overlap-distorted waveform
(bold trace) and original undistorted waveform (light trace), superposed
for comparison. The distorted waveform was then taken as the ERP av-
erage that would have been recorded and therefore as what would be
available to the experimenter for application of the Level 2 Adjar pro-
cedures. (d) The final waveform estimate (bold trace) obtained after
three full iterations (i.e., including carrying out Step 8), superposed on
the original undistorted waveform (light trace) for comparison.
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Figure 16. A simulation of Level 2 procedures with two types of ERP waveforms. Top row: an auditory ERP (left) and a vi-
sual ERP (right), which were used here as the original “true” undistorted Full Average waveforms. Row 2: the computer-gen-
erated, overlap-distorted averages that would be obtained if these waveforms were elicited in a cross-modal experiment at ISIs
of 170-300 ms; the corresponding previous and subsequent overlap (first-order only) distorting these waveforms are shown im-
mediately below. The distorted waveform averages were then taken as the recorded ERP averages that would be the starting
point for application of the Level 2 Adjar iterations. Rows 3-5: the final waveform estimates that would be obtained (if Step
8 were completed each time), after the first, third, and fifth iterations, along with the corresponding residual error waveforms
(resid err) derived by subtracting the original “true” waveforms (top row) from these waveform estimates. As the iterations pro-
ceed, one can also see the convergence process proceed, as the waveform estimates more and more closely approximate the orig-
inal undistorted ones, and the residual error approaches a flat line.

computer generated the overlap-distorted averages that would
be obtained if these waveforms were elicited in a cross-modal
experiment at ISIs of 170-300 ms. The resultant distorted wave-
form averages were then assumed to be the recorded ERP av-
erages that would be available to the experimenter for the Level
2 iterations. The waveform estimates that would be obtained at
the first, third, and fifth iterations, along with the associated
residual error, are shown. As the iterations proceed, so does the
convergence process, as the waveform estimates more and more
closely approximate the original undistorted ones and the resid-
ual error approaches a flat line.

A brief simplified analysis of the residual error in the Level
2 procedures can be found in Appendix 3. An important result
to note from that analysis is that the convergence is frequency
dependent, with the lowest frequencies in the residual overlap

error taking the most iterations to remove. The analysis also
suggests that the very lowest frequencies (less than, say, 0.25 of
1/T;,,, where T}, = the jitter width) would converge so slowly
that attenuating them ahead of time would generally be advised.
(In most cases, any such high-pass prefiltering should employ
causal filters.)

Conclusions

Many potential pitfalls can result from adjacent-response over-
lap when using ERPs to probe the mechanisms involved in the
processing of rapidly presented stimuli. The purpose of the de-
velopment of the Adjar framework and technique was to enable
a way to understand these problems and deal with them. In
some cases, an effective approach could consist of careful con-
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sideration of these potential problems during the experimental
design phase, with the intent of judiciously setting certain pa-
rameters (e.g., the ISI jitter) or making some other adjustment
in the design. In other cases, the approach might entail greater
caution in the interpretation of certain results, coupled with
close scrutiny of the prestimulus baselines of the ERP averages,
especially at certain sites. For a number of cases, however, pre-
cautions such as these might be inadequate in mitigating the po-
tential overlap problems, and the application of the Adjar
technique (or some other technique) for the actual removal of
the residual overlap may be required.

M.G. -Woldorff

The use of ERPs as probes in short-ISI experiments offers
great potential for understanding the dynamic mechanisms of
human information processing. Besides the selective attention
examples discussed in detail in this paper, potential applications
include language processing (e.g., priming effects), memory for-
mation and decay, and perceptual/neurophysiological habitu-
ation. When pursuing such research, the possible problems
incurred by response overlap must be addressed. The principles
and techniques presented in this paper are intended to help in
this regard, so that these avenues of research can be more ef-
fectively pursued.
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APPENDIX 1: WAVEFORM BOUNDARIES

The model of the averaged adjacent-response overlap in terms
of convolutions of waveforms with adjacent event distributions
implicitly assumes an infinite time axis. The Adjar technique es-
timates these convolutions by shifting waveforms either to the
left or right along the time axis, weighting and summing them,
and then subtracting the result from current ERP averages. Be-
cause in practice the epochs of these waveforms are finite in
length, it is important to consider what happens at their bound-
aries when they are shifted and subtracted.

Shifting waveforms to the right to estimate subsequent re-
sponses poses less of a problem in this regard; in fact, useful in-
formation for the estimation process can be inferred and should
be used. In particular, because the true subsequent response
could not have begun until its own time zero, any activity be-
fore that point could not have belonged to it. Therefore, before
the Full Average beirfg used to estimate subsequent responses
is shifted to the right, all activity in the prestimulus baseline
should be removed (i.e., zeroed out). In addition, as the itera-
tions proceed, this estimate of zero must be both accurate and
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stable, which again underscores the value of having long pre-
stimulus baselines.

Shifting waveforms to the left to estimate previous response
activity, however, has other considerations. In particular, the
right end of a left-shifted waveform will be missing data points
to subtract from the current epoch (considering that the wave-
form being shifted is not likely to have ended exactly on zero).
Probably the best way to handle this discontinuity is to (a) have
a fairly long epoch and (b) before shifting, taper the right end
of the waveform down toward baseline —that is, down to the
zero determined by the prestimulus baseline—by applying some
sort of tapering or windowing function (e.g., a simple linear re-
turn to baseline over several hundred milliseconds).

APPENDIX 2: ADJAR LEVEL 1-SOME ERROR
CONSIDERATIONS

It was reasoned in the text that the Full Average response is gen-
erally the best waveform to use in the calculation of the aver-
aged previous response, for both subaverages and slightly
distorted Full Averages. The reasoning was that, despite vari-
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ation in the individual previous responses that actually consti-
tute the averaged previous response, their proportions are
approximately the same as those constituting the Full Average.
Strictly speaking, however, the Full Average in this reasoning
is an idealized “true” Full Average, F,,, one completely free of
residual EEG noise and adjacent-response overlap. The best es-
timate available of F,, is the recorded Full Average ERP, F,,
which is therefore the best waveform actually available to use
in the convolution calculation. However, the question remains
as to just how well the summed average of all the individual
previous responses actually would be estimated by the convo-
lution of either of these two waveforms —that is, how much er-
ror is involved in this estimation?

First, consider how well the convolution of F,, itself, if it
were available, would approximate the total averaged previous
response. In the example in which M; attended left-ear re-
sponses occurred at latencies of —¢; ms, it is the average of
these M; responses, after being weighted by M;/N during the
averaging process (N = the total number of current trials), that
actually ends up contributing to the total averaged previous re-
sponse for all the previous time points. F;, best approximates
the average of these M, responses because F, is the mean of all
the attended left-ear responses and is therefore the “expected
value” waveform of the attended left-ear response. However,
the average of the M; responses is unlikely to be exactly equal
to F,.. Therefore using even F,, would introduce some error.

There are two main ways that the actual previous responses
can vary around F,, (i.e., around the mean waveform). One
very straightforward way is simple random variation of the
responses, unrelated to the temporal relationship with other
stimuli. The other main way that these responses can vary is
specifically as a result of what stimuli occurred before them and
how long ago. However, as discussed earlier, assuming fairly
well-randomized stimulus presentation, the M; previous re-
sponses are still randomly likely to have been any of the differ-
ent possibilities because the stimuli that occurred before them
were randomly distributed. Thus, for both of these ways for the
previous ERP responses to vary, the deviation of any single pre-
vious response from the true Full Average is basically random.

Therefore, to a first approximation, we can consider a model
where each of the N previous attended left-tone responses con-
sists of the mean of the attended left-tone responses in that ex-
periment —namely, F, —plus a variation waveform, V,(¢),
that varies randomly from one previous attended left tone to the
next. (These actual previous ERP responses by definition would
be free of any distortion from background EEG or overlap.)
Thus, every time F,, is used to estimate one of these previous
responses, it is likely to be incorrect by the average magnitude
of the V,(¢). When F,, is used to estimate the average of the
M; responses that occurred at —¢; ms, the expected amount of
error would be approximately equal to the expected average am-
plitude of averaging together M; independent V,(¢) wave-
forms. In a manner similar to the reduction of background
EEG noise with averaging, the expected average amplitude of
this error will be reduced by a factor of the square root of M;.
Similarly, if there were a total of N previous responses across
all the previous time points, the overall error in using F,,
in the calculation of the total average previous response would
be equivalent to averaging together N of the randomly vary-
ing V,,(¢) waveforms. Thus, this final error will be random in
nature, and its expected average magnitude, to a first ap-
proximation, will be equal to the average variation of the var-
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ious previous-response waveforms around F},, divided by the
square root of the number of previous (and therefore current)
responses. ,

How does this compare with other sources of random error?
The background EEG noise, which is also generally modeled as
random in nature, would almost invariably be substantially
larger than the average variation in the ERP response wave-
forms, especially at fast stimulus rates. Even if, for example,
the average variation in the individual ERPs were as large as
F,, itself, the average background EEG amplitude and its vari-
ation is likely to be 10-30 times as great. Because the average
amplitude of the EEG noise will have decreased by the same
factor of the VN during the averaging process, the contribu-
tion to the total random error from using F,, is likely to be rel-
atively negligible. Thus, this source of error will be ignored in
the rest of the discussion.

A second, potentially more significant source of error arises
when considering that practical application of the Adjar Level
1 technique requires recorded Full Averages that are less-than-
perfect estimates of the F,, responses. The magnitude and na-
ture of such errors can be examined by first expressing the
recorded Full Average, F,.(¢), as the sum of F,,(¢) and an er-
ror waveform, E(¢):

F(t) = F, (1) + E(2).

The E(¢) waveform itself is actually made up of two parts,
corresponding to the two main sources of error in a recorded
Full Average waveform: (a) residual “unaveraged-out” EEG
and (b) residual overlap from adjacent responses. Although the
nature of these two error contributions is fundamentally differ-
ent, the first generally being random across subjects and the sec-
ond systematic, both will be included in the steps below. Thus,

Fre(t) = F (1) + E,(8) + Eg (1),
where
E,,(t) = the random distortion from EEG noise
and

E,,(t) = the systematic distortion from overlap.

Now consider what happens when F,.(¢) is convolved with
the previous-event distribution, D, (¢), to estimate the aver-
aged previous response that is overlapping and distorting a par-
ticular current ERP:

(AURp)calc(t) = Dp(t) *E‘c(t)
=D, (2) * [F, (1) + E,(?) + E, (1))

or, more simply,
= Dp* (Ftr + Era + Esy)'

- Using the distributive property of convolution, this can be
rewritten as

(Ava)calc = (Dp*Er) + (Dp*Era) + (Dp*Esy)~

Because F,, is the “ideal” waveform to have convolved, the
first term will be considered the true overlapping averaged pre-
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vious response, (AvR,),,, that should be subtracted from the
original current ERP (ignoring the relatively negligible error dis-
cussed above that would result from using even F,). So,

(Ava)calc = (Ava)tr + (Dp*Era) + (Dp*Esy)-

Thus, subtracting (AvR,)qq. from the original ERP would
be incorrect by an amount equal to (D, * E,,) plus (D, * E;,).
Because E,, is random across subjects, (D, * E,,) will be also
and therefore will be of far less concern than any systematic dis-
tortion. In addition, because E,, is the residual EEG noise in
the Full Averages, which will usually have relatively many tri-
als, it is likely to be of relatively low amplitude. Furthermore,
the low-pass filtering resulting from the convolution with D,
will render it smaller still. Thus, although some additional ran-
dom unaveraged-out EEG noise may be added onto the current
ERPs during application of Level 1, it would generally be neg-
ligible and would be far outweighed by the ability to reduce sys-
tematic error due to overlap.

Therefore, the effectiveness of Level 1 in removing system-
atic error is mainly a function of the relative magnitudes of
(D, * Eg) and (AvRp)qq.. Because these functions were de-
rived from convolutions of E,, and F,., respectively, with the
same event distribution D,,, the effectiveness of the overlap re-
moval will also be closely related to the relative magnitudes of
these two functions. It is therefore easy to see why F,. does not
have to be exactly correct to be useful. In particular, if F,, is
only slightly distorted by adjacent-response overlap, then, by
definition, | E,,| must be small relative to F,.. The convolution
of E,, with D, will be smaller still (because of the low-pass fil-
tering effects) and will generally be negligible, especially rela-

" tive to (AvR,)cqc = Dy * F,.. Thus, even if F,, is slightly
distorted by overlap, using it for estimating the averaged pre-
vious response in the Level 1 procedures will still generally be
effective.

However, if F,. is more than just slightly distorted by over-
lap, then by definition E, is not small relative to F,.. There-
fore, (D, * E,,) will probably not be as negligible, and the
method will be proportionately less accurate. However, it is im-
portant to note that in almost all cases (in which the ISIs have
been jittered), E, will still be considerably smaller than F,,
(and therefore than F,.). This is because E, consists of the av-
erage of jittered adjacent responses that are “smeared-out” and
attenuated (or, equivalently, low-pass filtered), whereas F, is
the average of the current responses that are time-locked to the
averaging epoch and therefore not attenuated. Accordingly,
(D, * F,;) = (AvR,),, will generally be larger than (D, * E,),
and subtracting the sum of these [by subtracting (4vR,).q.]
will therefore provide more gain than loss in removing previous-
response overlap distortion from F,.. However, in cases where
this process does not provide adequate removal of the previous-
response overlap, from either the Full Averages or the subav-
erages, an iterative approach, such as that of Level 2, may be
necessary.

APPENDIX 3: ADJAR LEVEL 2-SOME
CONVERGENCE CONSIDERATIONS

A full analysis of the various approaches and convergence cri-
teria for Level 2 is beyond the intended scope of this article.
However, some insight can be gained into the convergence pro-
cess by carrying out a simplified analysis of the propagation of
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the residual overlap distortion error during a series of Level 2
iterations.

Consider an ERP experiment with essentially one type of
stimulus and response. Assume that because of the ISIs used,
the waveforms elicited, and the amplifier bandpass, essentially
all of the overlap distortion results from the ERPs elicited by
the first-order (i.e., immediately) adjacent stimuli in the se-
quence. That is, assume that the second- and higher order ad-
jacent responses are essentially too remote in time (as well as
too highly jittered, perhaps) to contribute much overlap. Also
assume that any effects of response variation are relatively neg-
ligible, as described in Appendix 2. (See Woldorff [1989, Ap-
pendix 2c], however, for some additional discussion on this
point.)

First, define the following terms:

D,, = previous-event distribution

D, = subsequent-event distribution

F,‘ = “true” Full Average

F, = original distorted Full Average (=F,.)
ovp, = the true (actual) previous-response overlap
ous; = the true (actual) subsequent-response overlap.

By definition,
Fy = F; + ovp, + ovs,.

According to the convolution model (and assuming first-order
overlap only),

ovp, = Dp* F,,
ovs, = Dg* F;,
s0,
Fo=F,+ (D,*F)) + (Ds* F,).
Now, let
ovp, = lst estimate of previous-response overlap,
ovsy = Ist estimate of subsequent-response overlap.

Following the steps outlined in the section on Level 2, first F,
is used to calculate an initial estimate of the subsequent overlap,

ovs, = Dyx Fy = Dy * [F, + oup; + ovs,]
= (Ds* F,) + (Dg*ovp,) + (Ds* ovs,)
= (Ds* F;) + [Dy* (Dp* Fy)] + [Dy* (Dg* F})).
The last term here is essentially the overlap from the second-
order subsequent event, so it would be activity that is highly
shifted to the right on the time axis. Because in this analysis

such activity is assumed to be relatively remote and negligible,
it will be dropped. Thus,

ovsy = (D% F) + [Ds* (D, * F)].
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Subtracting from Fy to obtain the first new template, Fig,

Fi, =>F0 — ovs,
= [F + (Dp* F) + (Do * Fy)]
= (Ds* F) + [Dy* (Dyp* F)}.

Cancelling terms,
=[F+ (Dp*F,)] — [Dsx (Dp* F))].

Using this waveform as the template to obtain the first estimate
of the previous-response overlap, convolve with D,,

ovp; = D,xF
= ((Dp*Ft) + [Dp* (Dp*E)]} - {Dp* [Ds * (Dp*E)]]'
Dropping the second-order adjacent-event term,
ovp, = (Dp*E) - {Dp* [Ds * (Dp*E)]}-

Subtracting from Fy to obtain a new template, F;,, which this
time will have the previous- (but not the subsequent-) overlap
estimate removed,

Fip = Fy — oup,
= [F, + (D,*F,) + (D;*F)]
~ ((D,*F,) — {D,* [D,* (D, * F,)}}).

Cancelling terms,
Fi,=F,+ (Ds*F,) + [D,* [Dg* (D, * F;)1}.

The next step is to iterate, now using F;, (rather than F;) as the
new template for subsequent responses,

ovs, = DgxFy,
= (Ds* F) + [Dg* (Do * F)]
+ (Ds* {Dp* [Dy* (Dpx F)))).

Dropping the second-order adjacent-event term,

ovsy = (Ds* F,) + (Dy* {D,* [Ds* (D, * F))]}),
and subtracting from I*Z) and then cancelling terms,

Fyy= Fo — 0Us,
= [F + (Dp* F) + (Ds* Fy)]
~ [{Ds*F,} + (D, (D, % [D,* (D, * F)l)]
= [F, + (Dp* F,)] — (Ds* (D, * [Dy* (D, * F)1}).
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F,; would then be convolved with D, to calculate ovp,, and so
on, but the pattern should now be clear. The general forms for
the subsequent and previous overlap estimates are, respectively,

ovs; = (Dy* F) + (Dy (D, * [Dy* (.. .F)]}),
ovp; = (Dp*E) - [Dp* (Ds* {Dp* [Ds* ( . Ft)]})] .

Thus, the error in these overlap estimates at the /th iteration can
be expressed as

ovs; — ovs, = Dy (D, * [Dyx (... F})]},
ovp; — ovs, = —D, % (D% {Dpx [De* (... F)1} ).

Thus, the residual error in the overlap estimates at each it-
eration is, to a first approximation, equal to the repeated con-
volutions of F; alternatively with D; and D,. Such repeated
convolutions are equivalent to repeated filtering of the adjacent
responses with the filter that corresponds to (convolution with)
these event distributions. Assuming these distributions are the
rectangular ones typically used in ERP experiments, this would
be equivalent to repeated application of the corresponding low-
pass (sinc function) filters, such as shown in Figures 4c, 5a, or
Sb. Because the gain of such filters is less than 1.0 at essentially
all frequencies (except DC), and substantially less than 1.0 at
all but the lowest frequencies, repeated application of such a fil-
ter would tend to eventually attenuate all but the lowest fre-
quencies in the residual error [i.e., (gain **{) — 0, if gain <
1.0]. Therefore, the magnitude of the residual error will tend
to become smaller and smaller with each iteration, and the it-
erative process will tend to converge.

This analysis also reveals the basic frequency dependence of
the convergence — namely, that the low-frequency overlap error
would be slowest to converge due to the gain value of the fil-
ter(s) being closer to 1.0 at such frequencies. Because the rate
at which these filter gain functions approach 1.0 at low frequen-
cies (see Figure 5) is inversely related to the ISI jitter width,
T;,, the use of wider jitter not only will tend to reduce the ini-
tial distortion of the ERP averages due to overlap, it will also
facilitate the convergence process of Level 2 iterations. The
present analysis also suggests, however, that to facilitate con-
vergence some initial high-pass filtering to attenuate the very
lowest frequencies (those less than, say, 0.25 of 1/7},,) may of-
ten be worthwhile. If such filtering is done digitally after data
collection, the filters should be causal because of some assump-
tions of causality in the technique (e.g., the zeroing of the pre-
stimulus baseline).

Future research might focus on analyzing in more detail the
convergence properties of this sequence of convolutions, as well
as on pursuing a more complete and rigorous analysis of this
process wherein the second- and higher-order overlap terms are
explicitly included.



